# References

[1]

N. J. Schork, “Personalized medicine: Time for one-person trials,”

*Nature News*, vol. 520, no. 7549, pp. 609–611, 2015, doi: 10.1038/520609a.[2]

C. Shivade

*et al.*, “A review of approaches to identifying patient phenotype cohorts using electronic health records,”*Journal of the American Medical Informatics Association*, vol. 21, no. 2, pp. 221–230, 2014, doi: 10.1136/amiajnl-2013-001935.[3]

W. Guo, M. Li, Y. Dong, and others, “Diabetes is a risk factor for the progression and prognosis of COVID-19,”

*Diabetes/Metabolism Research and Reviews*, vol. 36, no. 7, pp. 1–9, 2020, doi: 10.1002/dmrr.3319.[4]

A. K. Boehme, C. Esenwa, and M. S. V. Elkind, “Stroke Risk Factors, Genetics, and Prevention,”

*Circulation Research*, vol. 120, no. 3, pp. 472–495, 2017, doi: 10.1161/CIRCRESAHA.116.308398.[5]

D. Oliver

*et al.*, “What Causes the Onset of Psychosis in Individuals at Clinical High Risk? A Meta-analysis of Risk and Protective Factors,”*Schizophrenia Bulletin*, vol. 46, no. 1, pp. 110–120, 2020, doi: 10.1093/schbul/sbz039.[6]

J. Sánchez-Valle, H. Tejero, J. M. Fernández, and others, “Interpreting molecular similarity between patients as a determinant of disease comorbidity relationships,”

*Nature Communications*, vol. 11, no. 1, pp. 1–13, 2020, doi: 10.1038/s41467-020-16540-x.[7]

F. A. Cimini, I. Barchetta, G. Ciccarelli, and others, “Adipose tissue remodelling in obese subjects is a determinant of presence and severity of fatty liver disease,”

*Diabetes/Metabolism Research and Reviews*, vol. 37, no. 1, pp. 1–13, 2021, doi: 10.1038/s41467-020-16540-x.[8]

J. B. Cohen, S. J. Schrauben, L. Zhao, and others, “Clinical Phenogroups in Heart Failure With Preserved Ejection Fraction: Detailed Phenotypes, Prognosis, and Response to Spironolactone,”

*Heart Failure*, vol. 8, no. 3, pp. 172–184, 2020, doi: 10.1016/j.jchf.2019.09.009.[9]

A. A. Tsiatis,

*Dynamic Treatment Regimes: Statistical Methods for Precision Medicine*. CRC Press, 2019.[10]

H. G. Hong, D. C. Christiani, and Y. Li, “Quantile regression for survival data in modern cancer research: expanding statistical tools for precision medicine,”

*Precision Clinical Medicine*, vol. 2, no. 2, pp. 90–99, 2019, doi: 10.1093/pcmedi/pbz007.[11]

A. Guglielmi, G. Guidoboni, A. Harris, I. Sartori, and L. Torriani, “Statistical Methods in Medicine: Application to the Study of Glaucoma Progression,” in

*Ocular fluid dynamics*, 2019, pp. 599–612.[12]

H. Völzke, D. Alte, C. O. Schmidt, and others, “Cohort Profile: The Study of Health in Pomerania,”

*International Journal of Epidemiology*, vol. 40, no. 2, pp. 294–307, 2011, doi: 10.1093/ije/dyp394.[13]

W. M. P. P. Investigators and others, “The World Health Organization MONICA Project (monitoring trends and determinants in cardiovascular disease): a major international collaboration,”

*Journal of Clinical Epidemiology*, vol. 41, no. 2, pp. 105–114, 1988, doi: 10.1016/0895-4356(88)90084-4.[14]

R. Holle, M. Happich, H. Löwel, H.-E. Wichmann, null for the MONICA/KORA Study Group, and others, “KORA–a research platform for population based health research,”

*Das Gesundheitswesen*, vol. 67, no. S1, pp. 19–25, 2005, doi: 10.1055/s-2005-858235.[15]

A. Hofman, M. M. B. Breteler, C. M. van Duijn, and others, “The Rotterdam Study: 2010 objectives and design update,”

*European Journal of Epidemiology*, vol. 24, no. 9, pp. 553–572, 2009, doi: 10.1007/s10654-009-9386-z.[16]

P. Klemm, S. Oeltze-Jafra, K. Lawonn, K. Hegenscheid, H. Völzke, and B. Preim, “Interactive Visual Analysis of Image-Centric Cohort Study Data,”

*Transactions on Visualization and Computer Graphics (TVCG)*, vol. 20, no. 12, pp. 1673–1682, 2014, doi: 10.1109/TVCG.2014.2346591.[17]

S. Shilo, H. Rossman, and E. Segal, “Axes of a revolution: challenges and promises of big data in healthcare,”

*Nature Medicine*, vol. 26, pp. 29–38, 2020, doi: 10.1038/s41591-019-0727-5.[18]

M. Viceconti, P. Hunter, and R. Hose, “Big Data, Big Knowledge: Big Data for Personalized Healthcare,”

*Biomedical and Health Informatics*, vol. 19, no. 4, pp. 1209–1215, 2015, doi: 10.1109/JBHI.2015.2406883.[19]

P. Friederich, M. Krenn, I. Tamblyn, and A. Aspuru-Guzik, “Scientific intuition inspired by machine learning generated hypotheses,”

*Machine Learning: Science and Technology*, 2021, doi: 10.1088/2632-2153/abda08.[20]

W. W. Stead, “Clinical Implications and Challenges of Artificial Intelligence and Deep Learning,”

*Journal of the American Medical Association*, vol. 320, no. 11, pp. 1107–1108, 2018, doi: 10.1001/jama.2018.11029.[21]

J. Car, A. Sheikh, P. Wicks, and M. S. Williams, “Beyond the hype of big data and artificial intelligence: Building foundations for knowledge and wisdom,”

*BMC Medicine*, vol. 17, no. 143, 2019, doi: 10.1186/s12916-019-1382-x.[22]

J. H. Chen and S. M. Asch, “Machine Learning and Prediction in Medicine — Beyond the Peak of Inflated Expectations,”

*The New England Journal of Medicine*, vol. 376, no. 26, pp. 2507–2509, 2017, doi: 10.1056/NEJMp1702071.[23]

I. Goodfellow, Y. Bengio, and A. Courville,

*Deep Learning*. MIT Press, 2016.[24]

J. H. Friedman, “Greedy function approximation: A gradient boosting machine,”

*The Annals of Statistics*, vol. 29, no. 5, pp. 1189–1232, 2001, doi: 10.1214/aos/1013203451.[25]

A. Adadi and M. Berrada, “Peeking Inside the Black-Box: A Survey on Explainable Artificial Intelligence (XAI),”

*IEEE Access*, vol. 6, pp. 52138–52160, 2018, doi: 10.1109/ACCESS.2018.2870052.[26]

D. V. Carvalho, E. M. Pereira, and J. S. Cardoso, “Machine Learning Interpretability: A Survey on Methods and Metrics,”

*Electronics*, vol. 8, no. 8, pp. 1–34, 2019, doi: 10.3390/electronics8080832.[27]

B. Preim and K. Lawonn, “A Survey of Visual Analytics for Public Health,” in

*Computer graphics forum*, 2020, vol. 39, pp. 543–580, doi: 10.1111/cgf.13891.[28]

A. Vellido, “The importance of interpretability and visualization in Machine Learning for applications in medicine and health care,”

*Neural Computing and Applications*, vol. 32, pp. 18069–18083, 2019, doi: 10.1007/s00521-019-04051-w.[29]

A. Corvo, H. S. G. Caballero, M. A. Westenberg, M. A. van Driel, and J. van Wijk, “Visual Analytics for Hypothesis-Driven Exploration in Computational Pathology,”

*Transactions on Visualization and Computer Graphics (TVCG)*, pp. 1–18, 2020, doi: 10.1109/TVCG.2020.2990336.[30]

U. Niemann, B. Boecking, P. Brueggemann, W. Mebus, B. Mazurek, and M. Spiliopoulou, “Tinnitus-related distress after multimodal treatment can be characterized using a key subset of baseline variables,”

*PLOS ONE*, vol. 15, no. 1, pp. 1–18, 2020, doi: 10.1371/journal.pone.0228037.[31]

U. Niemann

*et al.*, “Plantar temperatures in stance position: A comparative study with healthy volunteers and diabetes patients diagnosed with sensoric neuropathy,”*EBioMedicine*, vol. 54, no. 102712, pp. 1–11, 2020, doi: 10.1016/j.ebiom.2020.102712.[32]

U. Niemann

*et al.*, “Rupture Status Classification of Intracranial Aneurysms Using Morphological Parameters,” in*Computer-based medical systems (CBMS)*, 2018, pp. 48–53, doi: 10.1109/CBMS.2018.00016.[33]

A. Oussous, F.-Z. Benjelloun, A. A. Lahcen, and S. Belfkih, “Big Data technologies: A survey,”

*Journal of King Saud University-Computer and Information Sciences*, vol. 30, no. 4, pp. 431–448, 2018, doi: 10.1016/j.jksuci.2017.06.001.[34]

B. Röhrig, J.-B. du Prel, D. Wachtlin, and M. Blettner, “Types of Study in Medical Research,”

*Deutsches Ärzteblatt International*, vol. 106, no. 15, pp. 262–268, 2009, doi: 10.3238/arztebl.2009.0262.[35]

M. S. Thiese, “Observational and interventional study design types; an overview,”

*Biochemia Medica*, vol. 24, no. 2, pp. 199–210, 2014, doi: 10.11613/BM.2014.022.[36]

E. Hariton and J. J. Locascio, “Randomised controlled trials – the gold standard for effectiveness research,”

*BJOG: An International Journal of Obstetrics & Gynaecology*, vol. 125, no. 13, p. 1716, 2018, doi: 10.1111/1471-0528.15199.[37]

N. D. Glenn,

*Cohort analysis*, Second edition. Sage, 2005.[38]

H. Völzke

*et al.*, “Prevalence Trends in Lifestyle-Related Risk Factors: Two Cross-Sectional Analyses With a Total of 8728 Participants From the Study of Health in Pomerania From 1997 to 2001 and 2008 to 2012,”*Deutsches Ärzteblatt International*, vol. 112, no. 11, pp. 185–192, 2015, doi: 10.3238/arztebl.2015.0185.[39]

G. Wiesner and E. K. Bittner, “Life expectancy, potential years of life lost (PYLL), and avoidable mortality in an East/West comparison,”

*Bundesgesundheitsblatt, Gesundheitsforschung, Gesundheitsschutz*, vol. 47, no. 3, pp. 266–278, 2004, doi: 10.1007/s00103-003-0793-0.[40]

H. Völzke

*et al.*, “Hepatic steatosis is associated with an increased risk of carotid atherosclerosis,”*World Journal of Gastroenterology*, vol. 11, no. 12, pp. 1848–1853, 2005, doi: 10.3748/wjg.v11.i12.1848.[41]

H. Völzke, “Multicausality in fatty liver disease: Is there a rationale to distinguish between alcoholic and non-alcoholic origin?”

*World Journal of Gastroenterology*, vol. 18, no. 27, pp. 3492–3501, 2012, doi: 10.3748/wjg.v18.i27.3492.[42]

C. Antunes, M. Azadfard, and M. Gupta, “Fatty Liver.” StatPearls Publishing, 2021, [Online]. Available: https://www.ncbi.nlm.nih.gov/books/NBK441992/.

[43]

D. Baguley, D. McFerran, and D. Hall, “Tinnitus,”

*The Lancet*, vol. 382, no. 9904, pp. 1600–1607, 2013, doi: 10.1016/S0140-6736(13)60142-7.[44]

J. M. Bhatt, N. Bhattacharyya, and H. W. Lin, “Relationships Between Tinnitus and the Prevalence of Anxiety and Depression,”

*The Laryngoscope*, vol. 127, no. 2, pp. 466–469, 2017, doi: 10.1002/lary.26107.[45]

I. H. L. Maes, R. F. F. Cima, J. W. Vlaeyen, L. J. C. Anteunis, and M. A. Joore, “Tinnitus: A Cost Study,”

*Ear and Hearing*, vol. 34, no. 4, pp. 508–514, 2013, doi: 10.1097/aud.0b013e31827d113a.[46]

C. R. Cederroth, S. Gallus, D. A. Hall, and others, “Towards an Understanding of Tinnitus Heterogeneity,”

*Frontiers in Aging Neuroscience*, vol. 11, no. 53, pp. 1–7, 2019, doi: 10.3389/fnagi.2019.00053.[47]

J. Hobson, E. Chisholm, and A. El Refaie, “Sound therapy (masking) in the management of tinnitus in adults,”

*Cochrane Database of Systematic Reviews*, no. 11, pp. 1–22, 2012, doi: 10.1002/14651858.CD006371.pub3.[48]

B. Kröner-Herwig, A. Frenzel, G. Fritsche, G. Schilkowsky, and G. Esser, “The management of chronic tinnitus: Comparison of an outpatient cognitive–behavioral group training to minimal-contact interventions,”

*Journal of Psychosomatic Research*, vol. 54, no. 4, pp. 381–389, 2003, doi: 10.1016/S0022-3999(02)00400-2.[49]

J. L. Henry and P. H. Wilson, “The Psychological Management of Tinnitus: Comparison of a Combined Cognitive Educational Program, Education Alone and a Waiting-List Control.”

*The International Tinnitus Journal*, vol. 2, pp. 9–20, 1996.[50]

P. Martinez‐Devesa, R. Perera, M. Theodoulou, and A. Waddell, “Cognitive behavioural therapy for tinnitus,”

*Cochrane Database of Systematic Reviews*, no. 9, 2010, doi: 10.1002/14651858.CD005233.pub3.[51]

J. S. Phillips and D. McFerran, “Tinnitus retraining therapy (TRT) for tinnitus,”

*Cochrane Database of Systematic Reviews*, no. 3, pp. 1–16, 2010, doi: 10.1002/14651858.CD007330.pub2.[52]

B. Langguth

*et al.*, “Different Patterns of Hearing Loss among Tinnitus Patients: A Latent Class Analysis of a Large Sample,”*Frontiers in Neurology*, vol. 8, pp. 1–46, 2017, doi: 10.3389/fneur.2017.00046.[53]

R. Tyler

*et al.*, “Identifying Tinnitus Subgroups With Cluster Analysis,”*American Journal of Audiology*, vol. 17, no. 2, 2, pp. 176–184, 2008, doi: 10.1044/1059-0889(2008/07-0044).[54]

M. Landgrebe

*et al.*, “The Tinnitus Research Initiative (TRI) database: a new approach for delineation of tinnitus subtypes and generation of predictors for treatment outcome,”*BMC Medical Informatics and Decision Making*, vol. 10, no. 1, pp. 1–7, 2010, doi: 10.1186/1472-6947-10-42.[55]

J. L. Bernheim and M. Buyse, “The Anamnestic Comparative Self-Assessment for Measuring the Subjective Quality of Life of Cancer Patients,”

*Journal of Psychosocial Oncology*, vol. 1, no. 4, pp. 25–38, 1993, doi: 10.1300/J077v01n04_03.[56]

L. S. Radloff, “The CES-D Scale: A Self-Report Depression Scale for Research in the General Population ,”

*Applied Psychological Measurement*, vol. 1, no. 3, pp. 385–401, 1977, doi: 10.1177/014662167700100306.[57]

M. Hautzinger and M. Bailer,

*ADS-Allgemeine Depressionsskala*. Beltz, 2003.[58]

M. Hörhold, D. Bolduan, C. Klapp, H. Volger, G. Scholler, and B. Klapp, “Testing a screening strategy for identifying psychosomatic patients in gynecologic practice,”

*Psychotherapie, Psychosomatik, medizinische Psychologie*, vol. 47, no. 5, pp. 156–162, 1997.[59]

M. Hörhold, B. F. Klapp, and U. Schimmack, “Testungen der Invarianz und der Hierarchie eines mehrdimensionalen Stimmungsmodells auf der Basis von Zweipunkterhebungen an Patienten-und Studentenstichproben,”

*Zeitschrift für Medizinische Psychologie*, vol. 2, no. 1, pp. 27–35, 1993.[60]

K. Tritt, F. von Heymann, M. Zaudig, I. Zacharias, W. Söllner, and T. Loew, “Entwicklung des Fragebogens ICD-10-Symptom-Rating (ISR),”

*Zeitschrift für psychosomatische Medizin und Psychotherapie*, vol. 54, no. 4, pp. 409–418, 2008, doi: 10.13109/zptm.2008.54.4.409.[61]

R. L. Spitzer, K. Kroenke, J. B. W. Williams, and others, “Validation and Utility of a Self-report Version of PRIME-MD: The PHQ Primary Care Study,”

*Journal of the American Medical Association*, vol. 282, no. 18, pp. 1737–1744, 1999, doi: 10.1001/jama.282.18.1737.[62]

H. Fliege

*et al.*, “The Perceived Stress Questionnaire (PSQ) Reconsidered: Validation and Reference Values From Different Clinical and Healthy Adult Samples,”*Psychosomatic Medicine*, vol. 67, no. 1, pp. 78–88, 2005, doi: 10.1097/01.psy.0000151491.80178.78.[63]

E. Geissner, “The Pain Perception Scale–a differentiated and change-sensitive scale for assessing chronic and acute pain,”

*Die Rehabilitation*, vol. 34, no. 4, pp. 35–43, 1995.[64]

M. Bullinger and M. Morfeld, “Der SF-36 Health Survey,” in

*Gesundheitsökonomische evaluationen*, Springer, 2008, pp. 387–402.[65]

P. Brueggemann, A. J. Szczepek, M. Rose, L. McKenna, H. Olze, and B. Mazurek, “Impact of Multiple Factors on the Degree of Tinnitus Distress,”

*Frontiers in Human Neuroscience*, vol. 10, no. 341, pp. 1–11, 2016, doi: 10.3389/fnhum.2016.00341.[66]

G. Scholler, H. Fliege, and B. F. Klapp, “Fragebogen zu Selbstwirksamkeit, Optimismus und Pessimismus,”

*Leibniz-Zentrum für Psychologische Information und Dokumentation (ZPID)*, vol. 49, no. 8, pp. 275–283, 1999, doi: 10.23668/psycharchives.337.[67]

G. Goebel and W. Hiller, “Psychische Beschwerden bei chronischem Tinnitus: Erprobung und Evaluation des Tinnitus-Fragebogens (TF),”

*Verhaltenstherapie*, vol. 2, no. 1, pp. 13–22, 1992, doi: 10.1159/000258202.[68]

G. Goebel and W. Hiller,

*Tinnitus-Fragebogen (TF). Ein Instrument zur Erfassung von Belastung und Schweregrad bei Tinnitus*. Hogrefe, 1998.[69]

A. J. Boulton, L. Vileikyte, G. Ragnarson-Tennvall, and J. Apelqvist, “The global burden of diabetic foot disease,”

*The Lancet*, vol. 366, no. 9498, pp. 1719–1724, 2005, doi: 10.1016/S0140-6736(05)67698-2.[70]

M. J. Kumari, J. Subash, and S. Jagdish, “How to Prevent Amputation in Diabetic Patients,”

*International Journal of Nursing Education*, vol. 6, pp. 40–44, 2014, doi: 10.5958/0974-9357.2014.00602.3.[71]

E. W. Gregg

*et al.*, “Changes in Diabetes-Related Complications in the United States, 1990–2010,”*The New England Journal of Medicine*, vol. 370, no. 16, pp. 1514–1523, 2014, doi: 10.1056/NEJMoa1310799.[72]

M. Volmer-Thole and R. Lobmann, “Neuropathy and Diabetic Foot Syndrome,”

*International Journal of Molecular Sciences*, vol. 17, no. 6, pp. 1–11, 2016, doi: 10.3390/ijms17060917.[73]

A. S. Fard, M. Esmaelzadeh, and B. Larijani, “Assessment and treatment of diabetic foot ulcer,”

*International Journal of Clinical Practice*, vol. 61, no. 11, pp. 1931–1938, 2007, doi: 10.1111/j.1742-1241.2007.01534.x.[74]

N. Singh, D. G. Armstrong, and B. A. Lipsky, “Preventing foot ulcers in patients with diabetes,”

*Journal of the American Medical Association*, vol. 293, no. 2, pp. 217–228, 2005, doi: 10.1001/jama.293.2.217.[75]

J. Grützner, T. Szczepanski, J. Kellersmann, J. Malanowski, S. Klose, and P. R. Mertens, “Smart Diabetic Insole - Towards home feet health monitoring in order to prevent diabetic foot ulcer,” in

*Biomedical engineering/ biomedizinische technik*, 2015, vol. 60, pp. 252–253, [Online]. Available: https://www.degruyter.com/downloadpdf/journals/bmte/60/s1/article-p1.pdf.[76]

M. J. H. Wermer, I. C. van der Schaaf, A. Algra, and G. J. E. Rinkel, “Risk of Rupture of Unruptured Intracranial Aneurysms in Relation to Patient and Aneurysm Characteristics,”

*Stroke*, vol. 38, no. 4, pp. 1404–1410, 2007, doi: 10.1161/01.STR.0000260955.51401.cd.[77]

S. Dhar

*et al.*, “Morphology Parameters for Intracranial Aneurysm Rupture Risk Assessment,”*Neurosurgery*, vol. 63, no. 2, pp. 185–197, 2008, doi: 10.1227/01.neu.0000316847.64140.81.[78]

J. Xiang

*et al.*, “Hemodynamic-Morphologic Discriminants for Intracranial Aneurysm Rupture,”*Stroke*, vol. 42, no. 1, pp. 144–152, 2011, doi: 10.1161/STROKEAHA.110.592923.[79]

M. I. Baharoglu, A. Lauric, B.-L. Gao, and A. M. Malek, “Identification of a dichotomy in morphological predictors of rupture status between sidewall-and bifurcation-type intracranial aneurysms,”

*Journal of Neurosurgery*, vol. 116, no. 4, pp. 871–881, 2012, doi: 10.3171/2011.11.JNS11311.[80]

J. G. Elmore, D. Wild, D. L. Katz, and H. D. Nelson,

*Jekel’s Epidemiology, Biostatistics and Preventive Medicine*. Elsevier Health Sciences, 2020.[81]

T. Ittermann

*et al.*, “Inverse Association Between Serum Free Thyroxine Levels and Hepatic Steatosis: Results From the Study of Health in Pomerania,”*Thyroid*, vol. 22, no. 6, pp. 568–574, 2012, doi: 10.1089/thy.2011.0279.[82]

K. Lau

*et al.*, “The association between fatty liver disease and blood pressure in a population-based prospective cohort study,”*Journal of Hypertension*, vol. 28, no. 9, pp. 1829–1835, 2010, doi: 10.1097/HJH.0b013e32833c211b.[83]

F. Stickel, S. Buch, K. Lau, and others, “Genetic variation in the PNPLA3 gene is associated with alcoholic liver injury in caucasians,”

*Hepatology*, vol. 53, no. 1, pp. 86–95, 2011, doi: 10.1002/hep.24017.[84]

G. Targher, C. P. Day, and E. Bonora, “Risk of Cardiovascular Disease in Patients with Nonalcoholic Fatty Liver Disease,”

*New England Journal of Medicine*, vol. 363, no. 14, pp. 1341–1350, 2010, doi: 10.1056/NEJMra0912063.[85]

M. R. P. Markus

*et al.*, “Hepatic Steatosis Is Associated With Aortic Valve Sclerosis in the General Population: The Study of Health in Pomerania (SHIP),”*Arteriosclerosis, Thrombosis, and Vascular Biology*, vol. 33, no. 7, pp. 1690–1695, 2013, doi: 10.1161/ATVBAHA.112.300556.[86]

A. D. Hingorani, D. A. van der Windt, R. D. Riley, and others, “Prognosis research strategy (PROGRESS) 4: Stratified medicine research,”

*BMJ: British Medical Journal*, vol. 346, pp. 1–9, 2013, doi: 10.1136/bmj.e5793.[87]

H. Völzke, G. Fung, T. Ittermann, and others, “A new, accurate predictive model for incident hypertension,”

*Journal of Hypertension*, vol. 31, no. 11, pp. 2142–2150, 2013, doi: 10.1097/HJH.0b013e328364a16d.[88]

C. Zhanga and R. L. Kodell, “Subpopulation-specific confidence designation for more informative biomedical classification,”

*Artificial Intelligence in Medicine*, vol. 58, no. 3, pp. 155–163, 2013, doi: 10.1016/j.artmed.2013.04.008.[89]

F. Pinheiro, M.-H. Kuo, A. Thomo, and J. Barnett, “Extracting association rules from liver cancer data using the FP-growth algorithm,” 2013, doi: 10.1109/ICCABS.2013.6629208.

[90]

J. Han, J. Pei, and Y. Yin, “Mining frequent patterns without candidate generation,” in

*ACM SIGMOD record*, 2000, vol. 29, pp. 1–12, doi: 10.1145/335191.335372.[91]

Z. Zhang, D. Gotz, and A. Perer, “Iterative cohort analysis and exploration,”

*Information Visualization*, vol. 14, no. 4, pp. 289–307, 2015, doi: 10.1177/1473871614526077.[92]

K. Wongsuphasawat and D. Gotz, “Exploring Flow, Factors, and Outcomes of Temporal Event Sequences with the Outflow Visualization,”

*Transactions on Visualization and Computer Graphics (TVCG)*, vol. 18, no. 12, pp. 2659–2668, 2012, doi: 10.1109/TVCG.2012.225.[93]

S. Ebadollahi, J. Sun, D. Gotz, J. Hu, D. Sow, and C. Neti, “Predicting Patient’s Trajectory of Physiological Data using Temporal Trends in Similar Patients: A System for Near-Term Prognostics,” in

*AMIA annual symposium proceedings*, 2010, pp. 192–196, [Online]. Available: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3041306/.[94]

J. Krause, A. Perer, and K. Ng, “Interacting with Predictions: Visual Inspection of Black-box Machine Learning Models,” in

*Conference on human factors in computing systems (CHI)*, 2016, pp. 5686–5697, doi: 10.1145/2858036.2858529.[95]

A. Goldstein, A. Kapelner, J. Bleich, and E. Pitkin, “Peeking Inside the Black Box: Visualizing Statistical Learning With Plots of Individual Conditional Expectation,”

*Journal of Computational and Graphical Statistics*, vol. 24, no. 1, pp. 44–65, 2015, doi: 10.1080/10618600.2014.907095.[96]

C. A. L. Pahins

*et al.*, “COVIZ: A System for Visual Information and Exploration of Patient Cohorts,”*VLDB Endowment*, vol. 12, no. 12, pp. 1822–1825, 2019, doi: 10.14778/3352063.3352075.[97]

C. A. de Lara Pahins, N. Ferreira, and J. Comba, “Real-Time Exploration of Large Spatiotemporal Datasets based on Order Statistics,”

*Transactions on Visualization and Computer Graphics (TVCG)*, vol. 26, no. 11, pp. 3314–3326, 2019, doi: 10.1109/TVCG.2019.2914446.[98]

J. Bernard, D. Sessler, T. May, T. Schlomm, D. Pehrke, and J. Kohlhammer, “A Visual-Interactive System for Prostate Cancer Cohort Analysis,”

*IEEE Computer Graphics and Applications*, vol. 35, no. 3, pp. 44–55, 2015, doi: 10.1109/MCG.2015.49.[99]

B. Preim

*et al.*, “Visual Analytics of Image-Centric Cohort Studies in Epidemiology,” in*Visualization in medicine and life sciences III*, Springer International Publishing, 2016, pp. 221–248.[100]

B. Preim, S. Alemzadeh, T. Ittermann, P. Klemm, U. Niemann, and M. Spiliopoulou, “Visual Analytics for Epidemiological Cohort Studies,” 2019, [Online]. Available: http://www.vismd.de/lib/exe/fetch.php?media=files:misc:preim_2019_medp.pdf.

[101]

P. Klemm

*et al.*, “3D Regression Heat Map Analysis of Population Study Data,”*Transactions on Visualization and Computer Graphics (TVCG)*, vol. 22, no. 1, pp. 81–90, 2015, doi: 10.1109/TVCG.2015.2468291.[102]

S. Alemzadeh

*et al.*, “Subpopulation Discovery and Validation in Epidemiological Data,” 2017, doi: 10.2312/eurova.20171118.[103]

T. Hielscher, M. Spiliopoulou, H. Völzke, and J.-P. Kühn, “Identifying Relevant Features for a Multi-factorial Disorder with Constraint-Based Subspace Clustering,” in

*Computer-based medical systems (CBMS)*, 2016, pp. 207–212, doi: 10.1109/CBMS.2016.42.[104]

T. Hielscher, U. Niemann, B. Preim, H. Völzke, T. Ittermann, and M. Spiliopoulou, “A Framework for Expert-Driven Subpopulation Discovery and Evaluation Using Subspace Clustering for Epidemiological Data,”

*Expert Systems with Applications*, vol. 113, pp. 147–160, 2018, doi: 10.1016/j.eswa.2018.07.003.[105]

M. Hall, “HotSpot (Weka Package).” 2012, [Online]. Available: https://weka.sourceforge.io/packageMetaData/hotSpot/1.0.4.html.

[106]

J. R. Quinlan, “Learning with Continuous Classes,” in

*Artificial intelligence (AI)*, 1992, pp. 343–348.[107]

E. Frank, M. A. Hall, and I. H. Witten,

*The WEKA Workbench. Online Appendix for "Data Mining: Practical Machine Learning Tools and Techniques"*. Morgan Kaufmann, 2016.[108]

N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,”

*Journal of Artificial Intelligence Research*, vol. 16, no. 1, pp. 321–357, 2002, doi: 10.1613/jair.953.[109]

J. Fürnkranz, D. Gamberger, and N. Lavrač,

*Foundations of Rule Learning*. Springer Science & Business Media, 2012.[110]

F. Herrera, C. J. Carmona, P. González, and M. J. Del Jesus, “An overview on subgroup discovery: foundations and applications,”

*Knowledge and Information Systems*, vol. 29, no. 3, pp. 495–525, 2011, doi: 10.1007/s10115-010-0356-2.[111]

D. Gilbert, “JFreeChart (Free Java class library for creating charts).” 2005-2021, [Online]. Available: http://www.jfree.org/jfreechart/.

[112]

D. W. Scott, “On optimal and data-based histograms,”

*Biometrika*, vol. 66, no. 3, pp. 605–610, 1979, doi: 10.1093/biomet/66.3.605.[113]

J.-P. Kühn, M. Evert, N. Friedrich, and others, “Noninvasive quantification of hepatic fat content using three-echo dixon magnetic resonance imaging with correction for T2\(*\) relaxation effects,”

*Investive Radiology*, vol. 46, no. 12, pp. 783–789, 2011, doi: 10.1097/RLI.0b013e31822b124c.[114]

M. Schleicher, T. Ittermann, U. Niemann, H. Völzke, and M. Spiliopoulou, “ICE: Interactive Classification Rule Exploration on Epidemiological Data,” in

*Computer-based medical systems (CBMS)*, 2017, pp. 606–611, doi: 10.1109/CBMS.2017.127.[115]

G. Bedogni

*et al.*, “The Fatty Liver Index: a simple and accurate predictor of hepatic steatosis in the general population,”*BMC Gastroenterology*, vol. 6, no. 33, pp. 1–7, 2006, doi: 10.1186/1471-230X-6-33.[116]

X. Yuan

*et al.*, “Population-based genome-wide association studies reveal six loci influencing plasma levels of liver enzymes,”*The American Journal of Human Genetics*, vol. 83, no. 4, pp. 520–528, 2008, doi: 10.1016/j.ajhg.2008.09.012.[117]

S. E. Baumeister

*et al.*, “Impact of Fatty Liver Disease on Health Care Utilization and Costs in a General Population: A 5-Year Observation,”*Gastroenterology*, vol. 134, no. 1, pp. 85–94, 2008, doi: 10.1053/j.gastro.2007.10.024.[118]

S. Bellentani

*et al.*, “Prevalence of and Risk Factors for Hepatic Steatosis in Northern Italy,”*BMC Gastroenterology*, vol. 132, no. 2, pp. 112–117, 2000, doi: 10.7326/0003-4819-132-2-200001180-00004.[119]

H. Völzke

*et al.*, “Menopausal status and hepatic steatosis in a general female population,”*Gut*, vol. 56, no. 4, pp. 594–595, 2007, doi: 10.1136/gut.2006.115345.[120]

M. Atzmüller, “Subgroup discovery,”

*Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery*, vol. 5, no. 1, pp. 35–49, 2015, doi: 10.1002/widm.1144.[121]

T.-P. Nguyen, C. Priami, and L. Caberlotto, “Novel drug target identification for the treatment of dementia using multi-relational association mining,”

*Scientific Reports*, vol. 5, pp. 1–13, 2015, doi: 10.1038/srep11104.[122]

J. C. Vick

*et al.*, “Data-Driven Subclassification of Speech Sound Disorders in Preschool Children,”*Journal of Speech, Language, and Hearing Research*, vol. 57, no. 6, pp. 2033–2050, 2014, doi: 10.1044/2014_JSLHR-S-12-0193.[123]

C. J. Carmona, P. González, M. J. Del Jesus, M. Navío-Acosta, and L. Jiménez-Trevino, “Evolutionary fuzzy rule extraction for subgroup discovery in a psychiatric emergency department,”

*Soft Computing*, vol. 15, no. 12, pp. 2435–2448, 2011, doi: 10.1007/s00500-010-0670-3.[124]

W. Klösgen and M. May, “Spatial Subgroup Mining Integrated in an Object-Relational Spatial Database,” in

*Principles of data mining and knowledge discovery*, 2002, pp. 275–286, doi: 10.1007/3-540-45681-3_23.[125]

D. Gamberger and N. Lavrac, “Expert-Guided Subgroup Discovery: Methodology and Application,”

*Journal of Artificial Intelligence Research*, vol. 17, pp. 501–527, 2002, doi: 10.1613/jair.1089.[126]

N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski, “Subgroup Discovery with CN2-SD,”

*Journal of Machine Learning Research*, vol. 5, pp. 153–188, 2004.[127]

N. Lavrač, P. Flach, and B. Zupan, “Rule Evaluation Measures: A Unifying View,” in

*Inductive logic programming (ILP)*, 1999, pp. 174–185, doi: 10.1007/3-540-48751-4_17.[128]

M. van Leeuwen and A. Knobbe, “Diverse subgroup set discovery,”

*Data Mining and Knowledge Discovery*, vol. 25, no. 2, pp. 208–242, 2012, doi: 10.1007/s10618-012-0273-y.[129]

P. Clark and T. Niblett, “The CN2 induction algorithm,”

*Machine Learning*, vol. 3, no. 4, pp. 261–283, 1989, doi: 10.1007/BF00116835.[130]

W. W. Cohen, “Fast effective rule induction,” in

*International conference on machine learning*, 1995, pp. 115–123, doi: 10.1016/B978-1-55860-377-6.50023-2.[131]

L. R. Dice, “Measures of the Amount of Ecologic Association Between Species,”

*Ecology*, vol. 26, no. 3, pp. 297–302, 1945, doi: 10.2307/1932409.[132]

R. Gutekunst, W. Becker, R. Hehrmann, T. Olbricht, and others, “Ultrasonic diagnosis of the thyroid gland,”

*Deutsche Medizinische Wochenschrift*, vol. 113, no. 27, pp. 1109–1112, 1988, doi: 10.1055/s-2008-1067777.[133]

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, “The WEKA Data Mining Software: An Update,”

*ACM SIGKDD Explorations*, vol. 11, no. 1, pp. 10–18, 2009, doi: 10.1145/1656274.1656278.[134]

M. Atzmüller and F. Puppe, “SD-Map – A Fast Algorithm for Exhaustive Subgroup Discovery,” in

*Machine learning and knowledge discovery in databases*, 2006, pp. 6–17, doi: 10.1007/11871637_6.[135]

M. Atzmüller and F. Lemmerich, “VIKAMINE – Open-Source Subgroup Discovery, Pattern Mining, and Analytics,” in

*Machine learning and knowledge discovery in databases*, 2012, pp. 842–845, doi: 10.1007/978-3-642-33486-3_60.[136]

U. M. Fayyad and K. B. Irani, “Multi-Interval Discretization of Continuous-Valued Attributes for Classification Learning,” in

*International joint conference on artificial intelligence (IJCAI)*, 1993, pp. 1022–1027.[137]

W. S. Cleveland, “Robust Locally Weighted Regression and Smoothing Scatterplots,”

*Journal of the American Statistical Association*, vol. 74, no. 368, pp. 829–836, 1979, doi: 10.1080/01621459.1979.10481038.[138]

Z. G. Jiang, S. C. Robson, and Z. Yao, “Lipoprotein metabolism in nonalcoholic fatty liver disease,”

*Journal of Biomedical Research*, vol. 27, no. 1, pp. 1–13, 2013, doi: 10.7555/JBR.27.20120077.[139]

T. Poynard, A. Abella, J.-P. Pignon, S. Naveau, R. Leluc, and J.-C. Chaput, “Apolipoprotein AI and alcoholic liver disease,”

*Hepatology*, vol. 6, no. 6, pp. 1391–1395, 1986, doi: 10.1002/hep.1840060628.[140]

J. Lizardi-Cervera, N. C. Chavez-Tapia, O. Pérez-Bautista, M. H. Ramos, and M. Uribe, “Association among C-reactive protein, Fatty liver disease, and cardiovascular risk,”

*Digestive Diseases and Sciences*, vol. 52, no. 9, pp. 2375–2379, 2007, doi: 10.1007/s10620-006-9262-6.[141]

T. Keenan

*et al.*, “Relation of uric acid to serum levels of high-sensitivity C-reactive protein, triglycerides, and high-density lipoprotein cholesterol and to hepatic steatosis,”*The American Journal of Cardiology*, vol. 110, no. 12, pp. 1787–1792, 2012, doi: 10.1016/j.amjcard.2012.08.012.[142]

N. Takamura

*et al.*, “Thyroid function is associated with carotid intima-media thickness in euthyroid subjects,”*Atherosclerosis*, vol. 204, no. 2, pp. 77–81, 2009, doi: 10.1016/j.atherosclerosis.2008.09.022.[143]

N. Gao, W. Zhang, Y. Zhang, Q. Yang, and S. Chen, “Carotid intima-media thickness in patients with subclinical hypothyroidism: a meta-analysis,”

*Atherosclerosis*, vol. 227, no. 1, pp. 18–25, 2013, doi: 10.1016/j.atherosclerosis.2012.10.070.[144]

E. Unal, A. Akın, R. Yıldırım, V. Demir, İ. Yildiz, and Y. K. Haspolat, “Association of Subclinical Hypothyroidism with Dyslipidemia and Increased Carotid Intima-Media Thickness in Children,”

*Journal of Clinical Research in Pediatric Endocrinology*, vol. 9, no. 2, pp. 144–149, 2017, doi: 10.4274/jcrpe.3719.[145]

A. Jabbar, A. Pingitore, S. H. S. Pearce, A. Zaman, G. Iervasi, and S. Razvi, “Thyroid hormones and cardiovascular disease,”

*Nature Reviews Cardiology*, vol. 14, no. 1, pp. 39–55, 2017, doi: 10.1038/nrcardio.2016.174.[146]

S. Fazio, E. A. Palmieri, G. Lombardi, and B. Biondi, “Effects of Thyroid Hormone on the Cardiovascular System,”

*Recent Progress in Hormone Research*, vol. 59, no. 1, pp. 31–50, 2004, doi: 10.1210/rp.59.1.31.[147]

A. A. Erikci

*et al.*, “The effect of subclinical hypothyroidism on platelet parameters,”*Hematology*, vol. 14, no. 2, pp. 115–117, 2009, doi: 10.1179/102453309X385124.[148]

G. Hesse, “Evidence and evidence gaps in tinnitus therapy,”

*GMS Current Topics in Otorhinolaryngology - Head and Neck Surgery*, vol. 15, pp. 1–42, 2016, doi: 10.3205/cto000131.[149]

S. M. Theodoroff, A. Schuette, S. Griest, and J. A. Henry, “Individual Patient Factors Associated with Effective Tinnitus Treatment,”

*Journal of the American Academy of Audiology*, vol. 25, no. 7, pp. 631–643, 2014, doi: 10.3766/jaaa.25.7.2.[150]

M. Schecklmann

*et al.*, “Cluster analysis for identifying sub-types of tinnitus: A positron emission tomography and voxel-based morphometry study,”*Brain Research*, vol. 1485, pp. 3–9, 2012, doi: 10.1016/j.brainres.2012.05.013.[151]

E. Genitsaridi, D. J. Hoare, T. Kypraios, and D. A. Hall, “A Review and a Framework of Variables for Defining and Characterizing Tinnitus Subphenotypes,”

*Brain Sciences*, vol. 10, no. 12, pp. 1–21, 2020, doi: 10.3390/brainsci10120938.[152]

W. Schlee, D. A. Hall, N. K. Edvall, B. Langguth, B. Canlon, and C. R. Cederroth, “Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment,”

*Frontiers in Medicine*, vol. 4, pp. 1–12, 2017, doi: 10.3389/fmed.2017.00086.[153]

H. Hotelling, “Analysis of a complex of statistical variables into principal components,”

*Journal of Educational Psychology*, vol. 24, no. 6, p. 417, 1933, doi: 10.1037/h0071325.[154]

J. C. Gower, “Some Distance Properties of Latent Root and Vector Methods Used in Multivariate Analysis,”

*Biometrika*, vol. 53, no. 3/4, pp. 325–338, 1966, doi: 10.2307/2333639.[155]

L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,”

*Journal of Machine Learning Research*, vol. 9, no. 86, pp. 2579–2605, 2008.[156]

L. McInnes, J. Healy, and J. Melville, “UMAP: Uniform manifold approximation and projection for dimension reduction.” 2018.

[157]

J.-F. Im, M. J. McGuffin, and R. Leung, “GPLOM: The Generalized Plot Matrix for Visualizing Multidimensional Multivariate Data,”

*Transactions on Visualization and Computer Graphics (TVCG)*, vol. 19, no. 12, pp. 2606–2614, 2013, doi: 10.1109/TVCG.2013.160.[158]

A. Mayorga and M. Gleicher, “Splatterplots: Overcoming Overdraw in Scatter Plots,”

*Transactions on Visualization and Computer Graphics (TVCG)*, vol. 19, no. 9, pp. 1526–1538, 2013, doi: 10.1109/TVCG.2013.65.[159]

J. A. Hartigan, “Printer graphics for clustering,”

*Journal of Statistical Computation and Simulation*, vol. 4, no. 3, pp. 187–213, 1975, doi: 10.1080/00949657508810123.[160]

D. Pelleg and A. W. Moore, “X-means: Extending K-means with Efficient Estimation of the Number of Clusters,” in

*International conference on machine learning (ICML)*, 2000, pp. 727–734.[161]

G. Schwarz and others, “Estimating the Dimension of a Model,”

*Annals of Statistics*, vol. 6, no. 2, pp. 461–464, 1978, doi: 10.1214/aos/1176344136.[162]

T. Ishioka, “An expansion of X-means for automatically determining the optimal number of clusters,” in

*Computational intelligence*, 2005, vol. 2, pp. 91–95.[163]

U. Niemann, P. Brueggemann, B. Boecking, M. Rose, M. Spiliopoulou, and B. Mazurek, “Phenotyping chronic tinnitus patients using self-report questionnaire data: cluster analysis and visual comparison,”

*Scientific Reports*, vol. 10, no. 1, pp. 1–10, 2020, doi: 10.1038/s41598-020-73402-8.[164]

J. L. Hintze and R. D. Nelson, “Violin Plots: A Box Plot-Density Trace Synergism,”

*The American Statistician*, vol. 52, no. 2, pp. 181–184, 1998, doi: 10.2307/2685478.[165]

A. C. Davison and D. V. Hinkley,

*Bootstrap Methods and Their Application*. Cambridge University Press, 1997.[166]

T. Kohonen,

*Self-Organizing Maps*. Springer Science & Business Media, 2012.[167]

R. Wehrens and J. Kruisselbrink, “Flexible Self-Organizing Maps in kohonen 3.0,”

*Journal of Statistical Software*, vol. 87, no. 1, pp. 1–18, 2018, doi: 10.18637/jss.v087.i07.[168]

P. Sarlin, “Self-organizing time map: An abstraction of temporal multivariate patterns,”

*Neurocomputing*, vol. 99, no. 1, pp. 496–508, 2013, doi: 10.1016/j.neucom.2012.07.011.[169]

P. C. Austin, J. V. Tu, J. E. Ho, D. Levy, and D. S. Lee, “Using methods from the data-mining and machine-learning literature for disease classification and prediction: A case study examining classification of heart failure subtypes,”

*Journal of Clinical Epidemiology*, vol. 66, no. 4, pp. 398–407, 2013, doi: 10.1016/j.jclinepi.2012.11.008.[170]

D. Raju, X. Su, P. A. Patrician, L. A. Loan, and M. S. McCarthy, “Exploring factors associated with pressure ulcers: A data mining approach,”

*International Journal of Nursing Studies*, vol. 52, no. 1, pp. 102–111, 2014, doi: 10.1016/j.ijnurstu.2014.08.002.[171]

I. Valavanis, E. G. Sifakis, P. Georgiadis, S. Kyrtopoulos, and A. A. Chatziioannou, “Derivation of Cancer Related Biomarkers from DNA Methylation Data from an Epidemiological Cohort,” in

*Engineering applications of neural networks*, Springer, 2013, pp. 249–256.[172]

V. Unnikrishnan

*et al.*, “Entity-level stream classification: Exploiting entity similarity to label the future observations referring to an entity,”*International Journal of Data Science and Analytics*, vol. 9, no. 1, pp. 1–15, 2020, doi: 10.1007/s41060-019-00177-1.[173]

C. C. Aggarwal, “Data Classification: Algorithms and Applications,” CRC Press, 2014, pp. 245–273.

[174]

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller, “Deep learning for time series classification: a review,”

*Data Mining and Knowledge Discovery*, vol. 33, no. 4, pp. 917–963, 2019, doi: 10.1007/s10618-019-00619-1.[175]

R. J. Hyndman and G. Athanasopoulos,

*Forecasting: Principles and Practice*. OTexts, 2018.[176]

J. Zhao

*et al.*, “Learning from Longitudinal Data in Electronic Health Record and Genetic Data to Improve Cardiovascular Event Prediction,”*Scientific Reports*, vol. 9, no. 1, pp. 1–10, 2019, doi: 10.1038/s41598-018-36745-x.[177]

F. Bagattini, I. Karlsson, J. Rebane, and P. Papapetrou, “A classification framework for exploiting sparse multi-variate temporal features with application to adverse drug event detection in medical records,”

*BMC Medical Informatics and Decision Making*, vol. 19, no. 1, pp. 1–20, 2019, doi: 10.1186/s12911-018-0717-4.[178]

J.-J. Beunza

*et al.*, “Comparison of machine learning algorithms for clinical event prediction (risk of coronary heart disease),”*Journal of Biomedical Informatics*, vol. 97, no. 103257, pp. 1–6, 2019, doi: 10.1016/j.jbi.2019.103257.[179]

M. Pechenizkiy, E. Vasilyeva, I. Zliobaite, A. Tesanovic, and G. Manev, “Heart Failure Hospitalization Prediction in Remote Patient Management Systems,” in

*Computer-based medical systems (CBMS)*, 2010, pp. 44–49, doi: 10.1109/CBMS.2010.6042612.[180]

J. Sun, D. Sow, J. Hu, and S. Ebadollahi, “A System for Mining Temporal Physiological Data Streams for Advanced Prognostic Decision Support,” in

*International Conference on Data Mining (ICDM)*, 2010, pp. 1061–1066, doi: 10.1109/ICDM.2010.102.[181]

C. Combi, E. Keravnou-Papailiou, and Y. Shahar,

*Temporal Information Systems in Medicine*. Springer, 2010.[182]

T. Hielscher, M. Spiliopoulou, H. Völzke, and J.-P. Kühn, “Mining Longitudinal Epidemiological Data to Understand a Reversible Disorder,” in

*Intelligent data analysis (IDA)*, 2014, pp. 120–130, doi: 10.1007/978-3-319-12571-8_11.[183]

Z. F. Siddiqui, G. Krempl, M. Spiliopoulou, J. M. Pena, N. Paul, and F. Maestu, “Predicting the post-treatment recovery of the patients suffering from TBI,”

*Brain Informatics*, vol. 2, pp. 33–44, 2015, doi: 10.1007/s40708-015-0010-6.[184]

J. D. Singer and J. B. Willett,

*Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence*. Oxford University Press, 2003.[185]

M. Ester, H.-P. Kriegel, J. Sander, and X. Xu, “A Density-based Algorithm for Discovering Clusters in Large Spatial Databases with Noise,” in

*Knowledge discovery and data mining (KDD)*, 1996, vol. 96, pp. 226–231.[186]

D. R. Wilson and T. R. Martinez, “Improved Heterogeneous Distance Functions,”

*Journal of Artificial Intelligence Research*, vol. 6, no. 1, pp. 1–34, 1997, doi: 10.1613/jair.346.[187]

P.-N. Tan, M. Steinbach, A. Karpatne, and V. Kumar,

*Introduction to Data Mining*, Second edition. Pearson, 2019.[188]

J. L. Leevy, T. M. Khoshgoftaar, R. A. Bauder, and N. Seliya, “A survey on addressing high-class imbalance in big data,”

*Journal of Big Data*, vol. 5, pp. 1–42, 2018, doi: 10.1186/s40537-018-0151-6.[189]

T. Hielscher, M. Spiliopoulou, H. Völzke, and J.-P. Kühn, “Using Participant Similarity for the Classification of Epidemiological Data on Hepatic Steatosis,” in

*Computer-based medical systems (CBMS)*, 2014, pp. 1–7, doi: 10.1109/CBMS.2014.28.[190]

M. A. Hall, “Correlation-based Feature Selection for Discrete and Numeric Class Machine Learning,” in

*International conference on machine learning (ICML)*, 2000, pp. 359–366, [Online]. Available: http://dl.acm.org/citation.cfm?id=645529.657793.[191]

L. Breiman, “Random Forests,”

*Machine learning*, vol. 45, no. 1, pp. 5–32, 2001, doi: 10.1023/A:1010933404324.[192]

R. Quinlan,

*C4.5: Programs for Machine Learning*. Morgan Kaufmann Publishers, 1993.[193]

U. Niemann, T. Hielscher, M. Spiliopoulou, H. Völzke, and J.-P. Kühn, “Can we classify the participants of a longitudinal epidemiological study from their previous evolution?” in

*Computer-based medical systems (CBMS)*, 2015, pp. 121–126, doi: 10.1109/CBMS.2015.12.[194]

U. Gerhardt, R. Breitschwerdt, and O. Thomas, “mHealth Engineering: A Technology Review,”

*Journal of Information Technology Theory and Application*, vol. 19, no. 3, pp. 82–117, 2018, [Online]. Available: https://aisel.aisnet.org/jitta/vol19/iss3/5.[195]

E. J. Boyko, A. D. Seelig, and J. H. Ahroni, “Limb- and Person-Level Risk Factors for Lower-Limb Amputation in the Prospective Seattle Diabetic Foot Study ,”

*Diabetes Care*, vol. 41, no. 4, pp. 891–898, 2018, doi: 10.2337/dc17-2210.[196]

A. Ming, I. Walter, A. Alhajjar, M. Leuckert, and P. R. Mertens, “Study protocol for a randomized controlled trial to test for preventive effects of diabetic foot ulceration by telemedicine that includes sensor-equipped insoles combined with photo documentation,”

*Trials*, vol. 20, no. 1, pp. 1–12, 2019, doi: 10.1186/s13063-019-3623-x.[197]

C. A. Abbott

*et al.*, “Innovative intelligent insole system reduces diabetic foot ulcer recurrence at plantar sites: a prospective, randomised, proof-of-concept study,”*The Lancet Digital Health*, vol. 1, no. 6, pp. e308–e318, 2019, doi: 10.1016/S2589-7500(19)30128-1.[198]

U. Waldecker, “Pedographic classification and ulcer detection in the diabetic foot,”

*Foot and Ankle Surgery*, vol. 18, no. 1, pp. 42–49, 2012, doi: 10.1016/j.fas.2011.03.004.[199]

M. Fernando, S. Wearing, and R. Crowther, “Handbook of Human Motion,” Springer, 2018, pp. 759–787.

[200]

C. Giacomozzi and F. Martelli, “Peak pressure curve: an effective parameter for early detection of foot functional impairments in diabetic patients,”

*Gait & Posture*, vol. 23, no. 4, pp. 464–470, 2006, doi: 10.1016/j.gaitpost.2005.06.006.[201]

A. De Cock, T. Willems, E. Witvrouw, J. Vanrenterghem, and D. De Clercq, “A functional foot type classification with cluster analysis based on plantar pressure distribution during jogging,”

*Gait & Posture*, vol. 23, no. 3, pp. 339–347, 2006, doi: 10.1016/j.gaitpost.2005.04.011.[202]

C. J. Bennetts, T. M. Owings, A. Erdemir, G. Botek, and P. R. Cavanagh, “Clustering and Classification of Regional Peak Plantar Pressures of Diabetic Feet,”

*Journal of Biomechanics*, vol. 46, no. 1, pp. 19–25, 2013, doi: 10.1016/j.jbiomech.2012.09.007.[203]

K. Deschamps

*et al.*, “Classification of Forefoot Plantar Pressure Distribution in Persons with Diabetes: A Novel Perspective for the Mechanical Management of Diabetic Foot?”*PLOS ONE*, vol. 8, no. 11, pp. 1–10, 2013, doi: 10.1371/journal.pone.0079924.[204]

P. K. Moulik, R. Mtonga, and G. V. Gill, “Amputation and mortality in new-onset diabetic foot ulcers stratified by etiology,”

*Diabetes Care*, vol. 26, no. 2, pp. 491–494, 2003, doi: 10.2337/diacare.26.2.491.[205]

P. C. Sun

*et al.*, “Impaired microvascular flow motion in subclinical diabetic feet with sudomotor dysfunction,”*Microvascular Research*, vol. 83, no. 2, pp. 243–248, 2012, doi: 10.1016/j.mvr.2011.06.002.[206]

N. C. Schaper, J. J. Van Netten, J. Apelqvist, B. A. Lipsky, K. Bakker, and others, “Prevention and management of foot problems in diabetes: A Summary Guidance for Daily Practice 2015, based on the IWGDF guidance documents,”

*Diabetes Research and Clinical Practice*, vol. 124, pp. 84–92, 2017, doi: 10.1016/j.diabres.2016.12.007.[207]

G. Rayman, R. A. Malik, A. K. Sharma, and J. L. Day, “Microvascular response to tissue injury and capillary ultrastructure in the foot skin of type I diabetic patients,”

*Clinical Science*, vol. 89, no. 5, pp. 467–474, 1995, doi: 10.1042/cs0890467.[208]

G. Rayman, S. A. Williams, J. Gamble, and J. E. Tooke, “A study of factors governing fluid filtration in the diabetic foot,”

*European Journal of Clinical Investigation*, vol. 24, no. 12, pp. 830–836, 1994, doi: 10.1111/j.1365-2362.1994.tb02027.x.[209]

M. L. Arts

*et al.*, “Data-driven directions for effective footwear provision for the high-risk diabetic foot,”*Diabetic Medicine*, vol. 32, no. 6, pp. 790–797, 2015, doi: 10.1111/dme.12741.[210]

A. Veves, H. J. Murray, M. J. Young, and A. J. M. Boulton, “The risk of foot ulceration in diabetic patients with high foot pressure: a prospective study,”

*Diabetologia*, vol. 35, no. 7, pp. 660–663, 1992, doi: 10.1007/BF00400259.[211]

D. G. Armstrong, E. J. G. Peters, K. A. Athanasiou, and L. A. Lavery, “Is there a critical level of plantar foot pressure to identify patients at risk for neuropathic foot ulceration?”

*The Journal of Foot and Ankle Surgery*, vol. 37, no. 4, pp. 303–307, 1998, doi: 10.1016/S1067-2516(98)80066-5.[212]

L. A. Lavery, D. G. Armstrong, R. P. Wunderlich, J. Tredwell, and A. J. M. Boulton, “Predictive value of foot pressure assessment as part of a population-based diabetes disease management program,”

*Diabetes Care*, vol. 26, no. 4, pp. 1069–1073, 2003, doi: 10.2337/diacare.26.4.1069.[213]

R. G. Frykberg

*et al.*, “Diabetic foot disorders: A clinical practice guideline (2006 revision),”*The journal of foot and ankle surgery*, vol. 45, no. 5, pp. 1–66, 2006.[214]

P. R. Cavanagh and S. A. Bus, “Off-loading the diabetic foot for ulcer prevention and healing,”

*Journal of Vascular Surgery*, vol. 52, no. 3, pp. 37S–43S, 2010, doi: 10.1016/j.jvs.2010.06.007.[215]

L. Rizzo

*et al.*, “Custom-made orthesis and shoes in a structured follow-up program reduces the incidence of neuropathic ulcers in high-risk diabetic foot patients,”*International Journal of Lower Extremity Wounds*, vol. 11, no. 1, pp. 59–64, 2012, doi: 10.1177/1534734612438729.[216]

U. Niemann

*et al.*, “Comparative Clustering of Plantar Pressure Distributions in Diabetics with Polyneuropathy May Be Applied to Reveal Inappropriate Biomechanical Stress,”*PLOS ONE*, vol. 11, no. 8, pp. 1–12, 2016, doi: 10.1371/journal.pone.0161326.[217]

L. Kaufman and P. J. Rousseeuw, “Clustering by Means of Medoids,”

*Statistical Data Analysis based on the L1-Norm and Related Methods*, pp. 405–416, 1987.[218]

S. S. Singh and N. C. Chauhan, “K-means v/s K-medoids: A Comparative Study,” in

*National conference on recent trends in engineering & technology*, 2011, pp. 839–844.[219]

D. C. Hoaglin, “John W. Tukey and Data Analysis,”

*Statistical Science*, vol. 18, no. 3, pp. 311–318, 2003, doi: 10.1214/ss/1076102418.[220]

R. Barn, R. Waaijman, F. Nollet, J. Woodburn, and S. A. Bus, “Predictors of Barefoot Plantar Pressure during Walking in Patients with Diabetes, Peripheral Neuropathy and a History of Ulceration,”

*PLOS ONE*, vol. 10, no. 2, pp. 1–12, 2015, doi: 10.1371/journal.pone.0117443.[221]

R. Waaijman

*et al.*, “Risk Factors for Plantar Foot Ulcer Recurrence in Neuropathic Diabetic Patients,”*Diabetes Care*, vol. 37, no. 6, pp. 1697–1705, 2014, doi: 10.2337/dc13-2470.[222]

S. A. Bus, “Priorities in offloading the diabetic foot,”

*Diabetes/Metabolism Research and Reviews*, vol. 28, no. S1, pp. 54–59, 2012, doi: 10.1002/dmrr.2240.[223]

R. Dahmen, R. Haspels, B. Koomen, and A. F. Hoeksma, “Therapeutic Footwear for the Neuropathic Foot: An algorithm,”

*Diabetes Care*, vol. 24, no. 4, pp. 705–709, 2001, doi: 10.2337/diacare.24.4.705.[224]

S. Tonekaboni, S. Joshi, M. D. McCradden, and A. Goldenberg, “What Clinicians Want: Contextualizing Explainable MachineLearning for Clinical End Use,” in

*Machine learning for healthcare*, 2019, pp. 359–380, [Online]. Available: http://proceedings.mlr.press/v106/tonekaboni19a.html.[225]

C. Molnar,

*Interpretable Machine Learning*. 2020.[226]

R. Guidotti, A. Monreale, S. Ruggieri, F. Turini, F. Giannotti, and D. Pedreschi, “A Survey of Methods for Explaining Black Box Models,”

*ACM Computing Surveys*, vol. 51, no. 5, pp. 1–42, 2018, doi: 10.1145/3236009.[227]

J. Kazemitabar, A. Amini, A. Bloniarz, and A. S. Talwalkar, “Variable Importance Using Decision Trees,” in

*Neural information processing systems (NIPS)*, 2017, vol. 30, pp. 426–435, [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/5737c6ec2e0716f3d8a7a5c4e0de0d9a-Paper.pdf.[228]

T. Hastie, R. Tibshirani, and J. Friedman,

*The Elements of Statistical Learning: Data Mining, Inference, and Prediction*. Springer Science & Business Media, 2009.[229]

M. T. Ribeiro, S. Singh, and C. Guestrin, “Why Should I Trust You?: Explaining the Predictions of Any Classifier,” in

*ACM SIGKDD Knowledge Discovery and Data Mining*, 2016, pp. 1135–1144, doi: 10.1145/2939672.2939778.[230]

S. M. Lundberg and S.-I. Lee, “A Unified Approach to Interpreting Model Predictions,” in

*Neural information processing systems (NIPS)*, 2017, pp. 4765–4774, [Online]. Available: http://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf.[231]

D. Alvarez-Melis and T. S. Jaakkola, “On the Robustness of Interpretability Methods.” 2018.

[232]

G. Visani, E. Bagli, and F. Chesani, “OptiLIME: Optimized LIME Explanations for Diagnostic Computer Algorithms.” 2020.

[233]

W. Samek, G. Montavon, S. Lapuschkin, C. J. Anders, and K.-R. Müller, “Toward Interpretable Machine Learning: Transparent Deep Neural Networks and Beyond.” 2020.

[234]

S. Bach, A. Binder, G. Montavon, F. Klauschen, K.-R. Müller, and W. Samek, “On Pixel-Wise Explanations for Non-Linear Classifier Decisions by Layer-Wise Relevance Propagation,”

*PLOS ONE*, vol. 10, no. 7, pp. 1–46, 2015, doi: 10.1371/journal.pone.0130140.[235]

S. Lipovetsky and M. Conklin, “Analysis of regression in game theory approach,”

*Applied Stochastic Models in Business and Industry*, vol. 17, no. 4, pp. 319–330, 2001, doi: 10.1002/asmb.446.[236]

E. Štrumbelj and I. Kononenko, “Explaining prediction models and individual predictions with feature contributions,”

*Knowledge and Information Systems*, vol. 41, no. 3, pp. 647–665, 2014, doi: 10.1007/s10115-013-0679-x.[237]

L. S. Shapley, “A Value for n-Person Games,”

*Contributions to the Theory of Games*, vol. 2, no. 28, pp. 307–317, 1953, doi: 10.1515/9781400881970-018.[238]

S. M. Lundberg

*et al.*, “Explainable AI for Trees: From Local Explanations to Global Understanding.” 2019.[239]

B. E. Boser, I. M. Guyon, and V. N. Vapnik, “A training algorithm for optimal margin classifiers,” in

*Workshop on Computational Learning Theory*, 1992, pp. 144–152, doi: 10.1145/130385.130401.[240]

W. N. Venables and B. D. Ripley,

*Modern Applied Statistics with S*, Fourth edition. Springer, 2002.[241]

I. Guyon and A. Elisseeff, “An Introduction to Variable and Feature Selection,”

*Journal of Machine Learning Research*, vol. 3, no. Mar, pp. 1157–1182, 2003.[242]

M. Kuhn and K. Johnson,

*Applied Predictive Modeling*. Springer, 2013.[243]

J. Friedman, T. Hastie, and R. Tibshirani, “Regularization Paths for Generalized Linear Models via Coordinate Descent,”

*Journal of Statistical Software*, vol. 33, no. 1, pp. 1–22, 2010, doi: 10.18637/jss.v033.i01.[244]

A. E. Hoerl and R. W. Kennard, “Ridge regression: Biased estimation for nonorthogonal problems,”

*Technometrics*, vol. 12, no. 1, pp. 55–67, 1970, doi: 10.2307/1271436.[245]

K. Kira and L. A. Rendell, “The Feature Selection Problem: Traditional Methods and a New Algorithm,” in

*AAAI artificial intelligence*, 1992, vol. 2, pp. 129–134, [Online]. Available: https://www.aaai.org/Library/AAAI/1992/aaai92-020.php.[246]

G. Chandrashekar and F. Sahin, “A survey on feature selection methods,”

*Computers & Electrical Engineering*, vol. 40, no. 1, pp. 16–28, 2014, doi: 10.1016/j.compeleceng.2013.11.024.[247]

B. Ding and R. Gentleman, “Classification Using Generalized Partial Least Squares,”

*Journal of Computational and Graphical Statistics*, vol. 14, no. 2, pp. 280–298, 2005, doi: 10.1198/106186005X47697.[248]

K. Hechenbichler and K. Schliep, “Weighted k-Nearest-Neighbor Techniques and Ordinal Classification,” in

*SFB 386, ludwig-maximilians university, munich*, 2004, pp. 1–16, [Online]. Available: http://nbn-resolving.de/urn/resolver.pl?urn=nbn:de:bvb:19-epub-1769-9.[249]

L. Breiman, J. Friedman, R. Olshen, and C. Stone,

*Classification and Regression Trees*. Wadsworth; Brooks, 1984.[250]

R. C. Team,

*R: A Language and Environment for Statistical Computing*. R Foundation for Statistical Computing, 2020.[251]

B. Bischl

*et al.*, “mlr: Machine Learning in R,”*Journal of Machine Learning Research*, vol. 17, no. 170, pp. 1–5, 2016, [Online]. Available: https://jmlr.org/papers/v17/15-066.html.[252]

M. Kuhn, “Building Predictive Models in R Using the caret Package,”

*Journal of Statistical Software*, vol. 28, no. 5, pp. 1–26, 2008, doi: 10.18637/jss.v028.i05.[253]

D. Meyer, E. Dimitriadou, K. Hornik, A. Weingessel, and F. Leisch,

*e1071: Misc Functions of the Department of Statistics, Probability Theory Group, TU Wien*. 2019.[254]

T. Therneau and B. Atkinson,

*rpart: Recursive Partitioning and Regression Trees*. 2018.[255]

M. Kuhn and R. Quinlan,

*C50: C5.0 decision trees and rule-based models*. 2018.[256]

M. N. Wright and A. Ziegler, “ranger: A Fast Implementation of Random Forests for High Dimensional Data in C++ and R,”

*Journal of Statistical Software*, vol. 77, no. 1, pp. 1–17, 2017, doi: 10.18637/jss.v077.i01.[257]

T. Chen and C. Guestrin, “XGBoost: A Scalable Tree Boosting System,” in

*Proc. Of ACM SIGKDD international conference on knowledge discovery and data mining*, 2016, pp. 785–794, doi: 10.1145/2939672.2939785.[258]

A. Fisher, C. Rudin, and F. Dominici, “All Models are Wrong, but Many are Useful: Learning a Variable’s Importance by Studying an Entire Class of Prediction Models Simultaneously,”

*Journal of Machine Learning Research*, vol. 20, no. 177, pp. 1–81, 2019.[259]

S. Glaßer, P. Berg, M. Neugebauer, and B. Preim, “Reconstruction of 3D Surface Meshes for Bood Flow Simulations of Intracranial Aneurysms,” in

*Computer- and robot-assisted surgery*, 2015, pp. 163–168.[260]

L. Antiga, M. Piccinelli, L. Botti, B. Ene-Iordache, A. Remuzzi, and D. A. Steinman, “An image-based modeling framework for patient-specific computational hemodynamics,”

*Medical & Biological Engineering & Computing*, vol. 46, no. 11, pp. 1097–1112, 2008, doi: 10.1007/s11517-008-0420-1.[261]

S. Saalfeld, P. Berg, A. Niemann, M. Luz, B. Preim, and O. Beuing, “Semiautomatic neck curve reconstruction for intracranial aneurysm rupture risk assessment based on morphological parameters,”

*International Journal of Computer Assisted Radiology and Surgery (IJCARS)*, vol. 13, no. 11, pp. 1781–1793, 2018, doi: 10.1007/s11548-018-1848-x.[262]

A. Lauric, M. I. Baharoglu, and A. M. Malek, “Ruptured status discrimination performance of aspect ratio, height/width, and bottleneck factor is highly dependent on aneurysm sizing methodology,”

*Neurosurgery*, vol. 71, no. 1, pp. 38–46, 2012, doi: 10.1227/NEU.0b013e3182503bf9.[263]

H. M. van Loo

*et al.*, “Major Depressive Disorder Subtypes to Predict Long-term Course,”*Depression & Anxiety*, vol. 31, no. 9, pp. 765–777, 2014, doi: 10.1002/da.22233.[264]

R. C. Kessler

*et al.*, “Testing a machine-learning algorithm to predict the persistence and severity of major depressive disorder from baseline self-reports,”*Molecular Psychiatry*, vol. 21, no. 10, pp. 1366–1371, 2016, doi: 10.1038/mp.2015.198.[265]

B. Langguth, M. Landgrebe, T. Kleinjung, G. P. Sand, and G. Hajak, “Tinnitus and depression,”

*The World Journal of Biological Psychiatry*, vol. 12, no. 7, pp. 489–500, 2011, doi: 10.3109/15622975.2011.575178.[266]

K. J. Trevis, N. M. McLachlan, and S. J. Wilson, “A systematic review and meta-analysis of psychological functioning in chronic tinnitus,”

*Clinical Psychology Review*, vol. 60, pp. 62–86, 2018, doi: 10.1016/j.cpr.2017.12.006.[267]

M. A. Whooley, A. L. Avins, J. Miranda, and W. S. Browner, “Case-finding instruments for depression: Two questions are as good as many,”

*Journal of General Internal Medicine*, vol. 12, no. 7, pp. 439–445, 1997, doi: 10.1046/j.1525-1497.1997.00076.x.[268]

S. A. Riolo, T. A. Nguyen, J. F. Greden, and C. A. King, “Prevalence of depression by race/ethnicity: findings from the National Health and Nutrition Examination Survey III,”

*American Journal of Public Health*, vol. 95, no. 6, pp. 998–1000, 2005, doi: 10.2105/AJPH.2004.047225.[269]

A. H. Weinberger, M. Gbedemah, A. M. Martinez, D. Nash, S. Galea, and R. D. Goodwin, “Trends in depression prevalence in the USA from 2005 to 2015: Widening disparities in vulnerable groups,”

*Psychological Medicine*, vol. 48, no. 8, pp. 1308–1315, 2018, doi: 10.1017/S0033291717002781.[270]

G. Yu, D. Witten, and J. Bien, “Controlling Costs: Feature Selection on a Budget.” 2020.

[271]

M. Kachuee, K. Karkkainen, O. Goldstein, D. Zamanzadeh, and M. Sarrafzadeh, “Cost-Sensitive Diagnosis and Learning Leveraging Public Health Data.” 2019, [Online]. Available: https://arxiv.org/abs/1902.07102.

[272]

R. A. Dobie, “Depression and tinnitus,”

*Otolaryngologic Clinics of North America*, vol. 36, no. 2, pp. 383–388, 2003, doi: 10.1016/s0030-6665(02)00168-8.[273]

R. L. Folmer, S. E. Griest, M. B. Meikle, and W. H. Martin, “Tinnitus severity, loudness, and depression,”

*Otolaryngology—Head and Neck Surgery*, vol. 121, no. 1, pp. 48–51, 1999, doi: 10.1016/S0194-5998(99)70123-3.[274]

J. B. S. Halford and S. D. Anderson, “Anxiety and depression in tinnitus sufferers,”

*Journal of Psychosomatic Research*, vol. 35, no. 4/5, pp. 383–390, 1991, doi: 10.1016/0022-3999(91)90033-K.[275]

J. W. Salazar, K. Meisel, E. R. Smith, A. Quiggle, D. B. McCoy, and M. R. Amans, “Depression in Patients with Tinnitus: A Systematic Review,”

*Otolaryngology–Head and Neck Surgery*, vol. 161, no. 1, pp. 28–35, 2019, doi: 10.1177/0194599819835178.[276]

J. R. Cebral, F. Mut, J. Weir, and C. Putman, “Quantitative Characterization of the Hemodynamic Environment in Ruptured and Unruptured Brain Aneurysms,”

*American Journal of Neuroradiology*, vol. 32, no. 1, pp. 145–151, 2011, doi: 10.3174/ajnr.A2419.[277]

P. Berg and O. Beuing, “Multiple intracranial aneurysms: A direct hemodynamic comparison between ruptured and unruptured vessel malformations,”

*International Journal of Computer Assisted Radiology and Surgery (IJCARS)*, vol. 13, no. 1, pp. 83–93, 2018, doi: 10.1007/s11548-017-1643-0.[278]

F. J. Detmer

*et al.*, “Development and internal validation of an aneurysm rupture probability model based on patient characteristics and aneurysm location, morphology, and hemodynamics,”*International Journal of Computer Assisted Radiology and Surgery (IJCARS)*, vol. 13, no. 11, pp. 1767–1779, 2018, doi: 10.1007/s11548-018-1837-0.[279]

F. Doshi-Velez and B. Kim, “Towards A Rigorous Science of Interpretable Machine Learning.” 2017.

[280]

S. Nolen-Hoeksema, “Gender Differences in Depression,”

*Current Directions in Psychological Science*, vol. 10, no. 5, pp. 173–176, 2001, doi: 10.1111/1467-8721.00142.[281]

M. Piccinelli and G. Wilkinson, “Gender differences in depression: Critical review,”

*The British Journal of Psychiatry*, vol. 177, no. 6, pp. 486–492, 2000, doi: 10.1192/bjp.177.6.486.[282]

M. P. Matud, “Gender differences in stress and coping styles,”

*Personality and Individual Differences*, vol. 37, no. 7, pp. 1401–1415, 2004, doi: 10.1016/j.paid.2004.01.010.[283]

I. Jaussent

*et al.*, “Insomnia Symptoms in Older Adults: Associated Factors and Gender Differences,”*The American Journal of Geriatric Psychiatry*, vol. 19, no. 1, pp. 88–97, 2011, doi: 10.1097/JGP.0b013e3181e049b6.[284]

C. P. McLean, A. Asnaani, B. T. Litz, and S. G. Hofmann, “Gender Differences in Anxiety Disorders: Prevalence, Course of Illness, Comorbidity and Burden of Illness,”

*Journal of Psychiatric Research*, vol. 45, no. 8, pp. 1027–1035, 2011, doi: 10.1016/j.jpsychires.2011.03.006.[285]

M. Asher, A. Asnaani, and I. M. Aderka, “Gender differences in social anxiety disorder: A review,”

*Clinical Psychology Review*, vol. 56, pp. 1–12, 2017, doi: 10.1016/j.cpr.2017.05.004.[286]

B. Langguth, P. M. Kreuzer, T. Kleinjung, and D. De Ridder, “Tinnitus: causes and clinical management,”

*The Lancet Neurology*, vol. 12, no. 9, pp. 920–930, 2013, doi: 10.1016/S1474-4422(13)70160-1.[287]

S. I. Erlandsson and K.-M. Holgers, “The impact of perceived tinnitus severity on health-related quality of life with aspects of gender,”

*Noise and Health*, vol. 3, no. 10, pp. 39–51, 2001, [Online]. Available: http://www.noiseandhealth.org/article.asp?issn=1463-1741;year=2001;volume=3;issue=10;spage=39;epage=51;aulast=Erlandsson.[288]

P. C. L. Pinto, T. G. Sanchez, and S. Tomita, “The impact of gender, age and hearing loss on tinnitus severity,”

*Brazilian Journal of Otorhinolaryngology*, vol. 76, no. 1, pp. 18–24, 2010, doi: 10.1590/S1808-86942010000100004.[289]

C. Meric, M. Gartner, L. Collet, and S. Chéry-Croze, “Psychopathological profile of tinnitus sufferers: evidence concerning the relationship between tinnitus features and impact on life,”

*Audiology and Neurotology*, vol. 3, no. 4, pp. 240–252, 1998, doi: 10.1159/000013796.[290]

C. Seydel, H. Haupt, H. Olze, A. J. Szczepek, and B. Mazurek, “Gender and Chronic Tinnitus: Differences in Tinnitus-Related Distress Depend on Age and Duration of Tinnitus,”

*Ear and Hearing*, vol. 34, no. 5, pp. 661–672, 2013, doi: 10.1097/AUD.0b013e31828149f2.[291]

W. Hiller and G. Goebel, “Factors Influencing Tinnitus Loudness and Annoyance,”

*Archives of Otolaryngology–Head & Neck Surgery*, vol. 132, no. 12, pp. 1323–1330, 2006, doi: 10.1001/archotol.132.12.1323.[292]

A. Lugo

*et al.*, “Sex-Specific Association of Tinnitus With Suicide Attempts,”*JAMA Otolaryngology–Head & Neck Surgery*, vol. 145, no. 7, pp. 685–687, 2019, doi: 10.1001/jamaoto.2019.0566.[293]

T. S. Han, J.-E. Jeong, S.-N. Park, and J. J. Kim, “Gender Differences Affecting Psychiatric Distress and Tinnitus Severity,”

*Clinical Psychopharmacology and Neuroscience*, vol. 17, no. 1, pp. 113–120, 2019, doi: 10.9758/cpn.2019.17.1.113.[294]

A. Van der Wal

*et al.*, “Sex Differences in the Response to Different Tinnitus Treatment,”*Frontiers in Neuroscience*, vol. 14, no. 422, pp. 1–9, 2020, doi: 10.3389/fnins.2020.00422.[295]

T. J. DiCiccio and B. Efron, “Bootstrap confidence intervals,”

*Statistical Science*, vol. 11, no. 3, pp. 189–212, 1996, doi: 10.1214/ss/1032280214.[296]

A. Hannemann, N. Friedrich, K. Dittmann, and others, “Age-and sex-specific reference limits for creatinine, cystatin C and the estimated glomerular filtration rate,”

*Clinical Chemistry and Laboratory Medicine*, vol. 50, no. 5, pp. 919–926, 2012, doi: 10.1515/CCLM.2011.788.[297]

H. Finney, D. J. Newman, and C. P. Price, “Adult Reference Ranges for Serum Cystatin C, Creatinine and Predicted Creatinine Clearance,”

*Annals of Clinical Biochemistry*, vol. 37, no. 1, pp. 49–59, 2000, doi: 10.1258/0004563001901524.[298]

M. Bullinger, “German translation and psychometric testing of the SF-36 Health Survey: Preliminary results from the IQOLA project,”

*Social Science & Medicine*, vol. 41, no. 10, pp. 1359–1366, 1995, doi: 10.1016/0277-9536(95)00115-N.[299]

J. Pearl and D. Mackenzie,

*The Book of Why: The New Science of Cause and Effect*. Basic Books, 2018.[300]

B. Schölkopf, “Causality for Machine Learning.” 2019.

[301]

M. A. Hernán and J. M. Robins,

*Causal Inference: What If*. Chapman & Hall/CRC, 2020.[302]

K. Yu

*et al.*, “Causality-based Feature Selection: Methods and Evaluations,”*ACM Computing Surveys*, vol. 53, no. 5, pp. 1–36, 2020, doi: 10.1145/3409382.[303]

P. Lemberger and I. Panico, “A Primer on Domain Adaptation.” 2020.